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Abstract. Tensor decompositions are higher-order analogues of matrix decompositions and have
proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor
decomposition, otherwise known as CANDECOMP/PARAFAC (CP), which expresses a tensor as the
sum of component rank-one tensors and is used in a multitude of applications such as chemometrics,
signal processing, neuroscience, and web analysis. The task of computing CP, however, can be
difficult. The typical approach is based on alternating least squares (ALS) optimization, but it is
not accurate in the case of overfactoring. High accuracy can be obtained by using nonlinear least
squares (NLS) methods; the disadvantage is that NLS methods are much slower than ALS. In this
paper, we propose the use of gradient-based optimization methods. We discuss the mathematical
calculation of the derivatives and show that they can be computed efficiently, at the same cost as
one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization
methods are more accurate than ALS and faster than NLS.
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1. Introduction. A tensor is a multidimensional or N -way array. The canon-
ical tensor decomposition [10, 22] is a higher-order (i.e., N ≥ 3) generalization of
the matrix singular value decomposition (SVD) and has proved useful in many ap-
plications such as chemometrics, signal processing, neuroscience, and web analysis;
e.g., see the surveys [3, 29]. We refer to the canonical decomposition as CANDE-
COMP/PARAFAC (CP) to recognize the original names given to it by Carroll and
Chang [10] and Harshman [22], respectively.

CP is an analogue of the matrix SVD because it decomposes a tensor into the sum
of component rank-one tensors. To understand CP, suppose that Z is a real-valued
three-way tensor of size I × J ×K and of rank R, meaning that it can be expressed
as the sum of no fewer than R components. Then its CP factorization is

Z =

R∑
r=1

ar ◦ br ◦ cr,

where ◦ denotes the vector outer product, and ar ∈ RI , br ∈ RJ , and cr ∈ RK

for r = 1, . . . , R. Each element in the summation, ar ◦ br ◦ cr, is a rank-one tensor
because it is the outer product of vectors. The factor matrices of CP are defined by
A =

[
a1 a2 · · · aR

]
, B =

[
b1 b2 · · · bR

]
, and C =

[
c1 c2 · · · cR

]
, and

the factors refer to the columns of the factor matrices. Specifically, the factors in
mode one refer to the columns of A, the factors in mode two to the columns of B,
and so on. The factors are analogous to the singular vectors in the SVD; however, a
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major difference is that CP factors are not orthonormal in each mode. In fact, it is
possible that the rank is greater than the largest dimension, i.e., R > max{I, J,K},
meaning that the factors in each mode are necessarily linear dependent. There is a
well known example of a 2× 2× 2 tensor with rank three (see [29, §3.1]); since A is
of size 2 × 3, its columns are necessarily linearly dependent. Therefore, in general,
there is no guarantee of linear independence of the factors in each mode. Further,
we do not assume that the factors are normalized to length one, although CP can be
formulated in this way; we assume for convenience that any multiplier is absorbed
into the factors. Despite CP’s lack of orthogonality or even linear independence of
factors in each mode, Kruskal [30] and others (see [29, §3.2] for a survey) have shown
that it does have the advantage of uniqueness, up to permutation and scaling, under
mild conditions. In contrast, it is well known that uniqueness of the SVD (up to sign)
is due to its orthogonality constraints and even then is not unique when multiple
singular values are equal. It is perhaps because of CP’s uniqueness property that it
often correctly describes underlying generating phenomena in data; this is particularly
true in the modeling of fluorescence excitation-emission measurements [4] commonly
used in chemistry.

In terms of computing CP, the first question, not directly addressed in this paper,
is the choice of R, the number of component rank-one tensors. We generally do not
know the tensor rank and its computation is NP-complete [29]. Since we cannot know
the rank in advance, we often face the problem of overfactoring, i.e., computing CP
when R is greater than the rank of the tensor. In practice, the user tries different
values of R and picks the “best” based on some criteria, e.g., model fit and the core
consistency (CORCONDIA) diagnostic [9]. However, there is a trade-off between the
model fit and core consistency for noisy data sets. Core consistency should be low
for values of R larger than the true rank, so increasing values of R are tested until
the core consistency drops. On the other hand, as R increases, the model fit typically
improves. In practice, one must balance the improvement of fit with the drop in
core consistency resulting in the very real possibility of choosing a value of R that is
larger than the true rank. As an example of using the core consistency diagnostic,
see [1] for further discussion in the context of extracting brain activities through
the analysis of EEG (electroencephalography) signals without any prior information
about the number of activities. Another issue, not addressed in this paper, is that
computing CP can be difficult because some tensors may have approximations of a
lower rank that are arbitrarily close in terms of fit; this leads to degeneracy and can
cause problems in practice [35, 42, 44, 48].

In this paper we focus on the question of how to compute the CP factor matrices
for a given value of R (not necessarily equal to the rank of the tensor). The typical
method for finding the CP components is alternating least squares (ALS) optimiza-
tion, as proposed in the original CP papers [10, 22]. The essential idea in ALS is to
start with an initial guess for the factor matrices, solve a least squares problem for
A while holding B and C fixed, then fix C and the new A to solve for B, and so
on. This is the method of choice because of its speed and ease of implementation.
Unfortunately, ALS often fails to obtain the correct solution, especially in the case
of overfactoring. Another promising alternative which we discuss is a nonlinear least
squares (NLS) formulation; the NLS approach is superior to ALS in terms of find-
ing the correct solution, but significantly slower. Here, we propose using a general
gradient-based optimization (OPT) formulation. We present the objective function,
formulate the derivatives, and discuss computational issues such as regularization.
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Numerical studies indicate that OPT is faster than NLS without sacrificing accuracy.

Before we continue, we direct the reader to other alternative algorithms that
have been proposed over the years with a goal of improving the convergence rate
of ALS and its robustness to overfactoring. Faber, Bro, and Hopke [17] compared
ALS with a number of competing algorithms: direct trilinear decomposition (DTLD)
[16, 18, 19, 20, 31, 33, 45], alternating trilinear decomposition (ATLD) [56], self-
weighted alternating trilinear decomposition (SWATLD) [12, 13], pseudo-alternating
least squares (PALS) [11], alternating coupled vectors resolution (ACOVER) [25],
alternating slice-wise diagonalization (ASD) [24], and alternating coupled matrices
resolution (ACOMAR) [32]. It is shown that while none of the algorithms is better
than ALS in terms of the quality of solution, ASD may be an alternative to ALS when
the computation time is a priority. Recently, Tomasi and Bro [52] have compared ALS
with some of the algorithms mentioned above (DTLD, ASD, SWATLD) as well as two
NLS approaches, PMF3 [40] and dGN (damped Gauss-Newton) [51, 52]. The perfor-
mance results show that ASD, the best alternative in the previous study [17], is not
as good as ALS in terms of the accuracy of the solution. On the other hand, current
NLS-based approaches outperform ALS in terms of accuracy (specifically in the case
of overfactoring) but at the expense of memory and time overhead, making NLS-based
approaches intractable for large data sets. We use the experimental methodology of
[52] as the basis for the numerical results in this paper in which we compare ALS
and NLS and an implementation of our proposed OPT methods. Tomasi [49] has also
compared ALS and NLS along with both first-order (nonlinear conjugate gradient
method) and second-order (Newton’s method) optimization; we contrast his results
with ours in the conclusion.

Other approaches have been proposed in the literature as well but not yet com-
pared numerically in studies such as the ones mentioned above. De Lathauwer, De
Moor, and Vandewalle [15] cast CP as a simultaneous generalized Schur decompo-
sition (SGSD) and this approach has been applied to overcoming the problem of
degeneracy [48]. De Lathauwer [14] also developed a method based on simultaneous
matrix diagonalization. Vorobyov et al. [54] formulated the CP problem using an
objective function based on least absolute error instead of least squares error in order
to compute CP robustly in the presence of non-Gaussian noise.

The main contributions of this paper are summarized as follows:

• Exploring the formulation of CP as a general optimization problem, with a
particular focus on first-order optimization methods which promise better scalability.
This formulation uses regularization in order to directly address the scaling indeter-
minacy.

• Directly calculating the gradient (without recourse to the Jacobian) for the
general optimization formulation of CP and showing that the derivatives can be com-
puted efficiently. The analysis can be used to obtain analogous formulations for other
tensor decompositions.

• Extensively comparing the performance of several methods for computing CP
on both real and synthetic third-order data. These studies indicate that the OPT
approach advanced in this paper has advantages in comparison with ALS and NLS.

This paper is structured as follows. Section 2 presents the notation and basic
operations used throughout the paper. The ALS method is reviewed in §3. The OPT
method is presented in §4, with a focus on the formulation of the required derivatives,
as well as discussion of practical issues such as regularization. We contrast the NLS
approach in §5. We follow the experimental procedure of Tomasi and Bro [52] to
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compare the methods; the details of the methods that are employed and the results
are presented in §6. Conclusions are discussed in §7. Detailed numerical results are
available in Appendix B.

2. Notation. We generally use the notation of [29], which was adapted from
[27]. Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by boldface
lowercase letters, e.g., a. Matrices are denoted by boldface capital letters, e.g., A.
Higher-order tensors are denoted by boldface Euler script letters, e.g., X. The ith
entry of a vector a is denoted by ai, element (i, j) of a matrix A is denoted by aij ,
and element (i, j, k) of a third-order tensor X is denoted by xijk. The jth column of
a matrix A is denoted aj . Indices typically range from 1 to their capital version, e.g.,
i = 1, . . . , I. The nth element in a sequence is denoted by a superscript in parentheses,
e.g., A(n) denotes the nth matrix in a sequence.

The inner product of two same-sized tensors X,Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

〈X,Y 〉 =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

The norm of a tensor X ∈ RI1×I2×···×IN is the square root of its inner product with
itself, i.e.,

‖X ‖ =
√
〈X,X 〉.

For matrices (i.e., second-order tensors), ‖ · ‖ refers to the analogous Frobenius norm,
and, for vectors (i.e., first-order tensors), ‖ · ‖ refers to the analogous two-norm.

An N -way tensor X ∈ RI1×I2×···×IN is rank one if it can be written as the outer
product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
for all 1 ≤ in ≤ In.

The Khatri-Rao product 1 [47] is the “matching columnwise” Kronecker product.
Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri-Rao product is denoted by
A�B. The result is a matrix of size (IJ)×K and defined by

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
.

Recall that the Kronecker product of two vectors a ∈ RI and b ∈ RJ is a vector of
length IJ defined by

a⊗ b =


a1b
a2b

...
aIb

 .
1We use the Khatri-Rao product as defined in [26, 47], which corresponds to columnwise Kro-

necker product. The Khatri-Rao product has also been defined as a block Kronecker product in the
literature [53].
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The Khatri-Rao product has the following property [47]:

(A�B)T(A�B) = ATA ∗BTB,

where ∗ denotes the elementwise product. Furthermore, the pseudo-inverse of the
Khatri-Rao product has special form [47]:

(A�B)† = ((ATA) ∗ (BTB))†(A�B)T,

where A† denotes the Moore-Penrose pseudo-inverse of A [21]. Recall that the pseudo-
inverse of the transpose is the transpose of the pseudo-inverse, so

((A�B)T)† = (A�B)((ATA) ∗ (BTB))†. (2.1)

Further, because the Khatri-Rao product is associative, this property can be extended
to more than two matrices; see [47] for further details.

Matricization, also known as unfolding or flattening, is the process of reorder-
ing the elements of an N -way tensor into a matrix. The mode-n matricization
of a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n one-
dimensional “fibers” to be the columns of the resulting matrix. Specifically, tensor
element (i1, i2, . . . , iN ) maps to matrix element (in, j) where

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk, with Jk =


1, if k = 1 or if k = 2 and n = 1,
k−1∏
m=1
m6=n

Im. otherwise.

Since matricization is just a rearrangement of the elements, clearly ‖X‖ = ‖X(n)‖ for
n = 1, . . . , N ; see [29, §2.4] for further details on matricization.

The n-mode (vector) product of a tensor X ∈ RI1×I2×···×IN with a vector v ∈ RIn

is denoted by X×n v. The result is of order N − 1, i.e., the size is I1 × · · · × In−1 ×
In+1 × · · · × IN . Elementwise,

(X×n v)i1···in−1in+1···iN =

In∑
in=1

xi1i2···iN vin .

A tensor may be multiplied by multiple vectors at once. For example, assume v(n) ∈
RIn for n = 1, . . . , N . Then we use the new notation # to denote multiplication in
multiple modes. Multiplication in all modes results in a scalar, i.e.,

X

N

#
n=1

v ≡ X×1 v(1) ×2 v(2) · · · ×N v(N) =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN v
(1)
i1
v
(2)
i2
· · · v(N)

iN
.

Multiplication in every mode except mode n results in a vector of length In, i.e., the
inth element of that vector is(

X

N

#
m=1
m6=n

v

)
in

=

I1∑
i1=1

· · ·
In−1∑

in−1=1

In+1∑
in+1=1

· · ·
IN∑

iN=1

xi1i2···iN v
(1)
i1
· · · v(n−1)in−1

v
(n+1)
in+1

· · · v(N)
iN

= X(n)

(
v(N) ⊗ · · · ⊗ v(n+1) ⊗ v(n−1) ⊗ · · · ⊗ v(1)

)
.

We also note that multiplication in every mode except n and p, results in a matrix
of size In × Ip.
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3. CP and alternating least squares. In the introduction, we presented CP
for three-way tensors. Here, we present CP for general N -way tensors. Let Z be a real-
valued N -way tensor of size I1× I2× · · ·× IN . Given R (the number of components),
our goal is to find a CP factorization [10, 22] such that

Z ≈
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

where a
(n)
r ∈ RIn for n = 1, . . . , N and r = 1, . . . , R. Note that this formulation does

not have scalar weights for each component rank-one tensor; these are assumed to be
absorbed into the factors. We use the “Kruskal operator” shorthand notation of [28]:

JA(1), . . . ,A(N)K ≡
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

where the factor matrices are defined as

A(n) =
[
a
(n)
1 · · · a

(n)
R

]
,

and so are of size In × R, for n = 1, . . . , N . The columns of A(n) are the factors for
mode n. It is useful to note that JA(1), . . . ,A(N)K can be written in matricized form
(see, e.g, [28]) as(

JA(1), . . . ,A(N)K
)
(n)

= A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T
.

The problem of computing CP is, given a tensor Z and a choice for R (not

necessarily the rank of Z), find the factor matrices A(n) of size In×R for n = 1, . . . , N .
Using the “Kruskal operator” notation defined above, we can formulate the problem
of fitting CP as a least squares optimization problem:

min f(A(1), . . . ,A(N)) ≡ 1

2

∥∥∥Z− JA(1), . . . ,A(N)K
∥∥∥2 . (3.1)

The ALS method for CP was proposed in the original papers by Carroll and
Chang [10] and Harshman [22], and still remains the primary workhorse algorithm
today due to its speed and ease of implementation [52]. In this section, we derive
ALS as it is typically done in the tensor factorization community; the next section
includes an alternate derivation. The premise is to iteratively optimize one factor
matrix at a time, rather than solving (3.1) for A(1) through A(N) simultaneously. We
can think of this as a block nonlinear Gauss-Seidel approach because we are solving a
nonlinear equation for a block of variables while holding all the other variables fixed.
Therefore, at each inner iteration, the goal is to solve

min
A(n)

f(A(1), . . . ,A(N)), (3.2)

for some particular fixed n, while holding all the other factor matrices constant. We
can rewrite the equation in matrix form as

min
A(n)

1

2

∥∥∥∥Z(n) −A(n)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T ∥∥∥∥2 .
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With all but one factor matrix fixed, the problem reduces to a linear least squares
problem, and the exact solution is given by

A(n) = Z(n)

((
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T)†
.

Naively, this requires computing the pseudo-inverse of a matrix of size

N∏
m=1
m 6=n

Im × R.

However, from (2.1), this can be simplified to

A(n) = Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
(Γ(n))†, (3.3)

where

Γ(n) = (A(1)TA(1)) ∗ · · · ∗ (A(n−1)TA(n−1)) ∗ (A(n+1)TA(n+1)) ∗ · · · ∗ (A(N)TA(N))

for n = 1, . . . , N. (3.4)

Note that this formulation only requires computing the pseudo-inverse of a matrix of
size R×R. The ALS procedure for CP is well known; see, e.g., [47].

4. Optimization for CP. As an alternative to the ALS approach for CP, we
propose solving for all the factor matrices simultaneously using a gradient-based opti-
mization approach. (It is of course also possible to exploit the least squares structure
of the problem via a NLS method; this is discussed in §5.) We can consider the CP ob-
jective function f in (3.1) as a mapping from the cross-product of N two-dimensional
vector spaces to R, i.e.,

f : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ R.

Therefore, we have a function of

P = R

N∑
n=1

In (4.1)

variables. Although f in (3.1) is written as a function of matrices, it can be thought
of as a scalar-valued function where the parameter vector x comprises the vectorized
and stacked matrices A(1) through A(N), i.e.,

x =



a
(1)
1
...

a
(1)
R
...

a
(N)
1
...

a
(N)
R


. (4.2)

In this view, f : RP 7→ R, and it is straightforward to derive the gradient, which we
do in §4.1. We note that computation of the Hessian of f is also straightforward (see,
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e.g., [2] for details) and can be used for higher-order optimization methods, but we do
not address this in our paper. We discuss the effect of the scaling and permutation
indeterminacies of CP in §4.2, explaining the benefits of regularization and deriving
the derivatives of the regularized objective. Once the derivatives are known, any
first-order optimization method can be used. We use a generic nonlinear conjugate
gradient (NCG) method and test its numerical performance in §6. Harshman has
discussed using gradient-based optimization for computing CP, which at that time
was impractical due to the limited computing resources [22]. Both Paatero [41] and
Wang and Hopke [55] have previously proposed using specialized NCG methods for
CP, though neither presented numerical studies. Our implementation is different, as
described in §6.

4.1. CP gradient. We can assemble the gradient, a vector of size P , by calculat-

ing the partial derivative with respect to each a
(n)
r for r = 1, . . . , R and n = 1, . . . , N .

Note that the partial derivative ∂f

∂a
(n)
r

is a vector of length In. Theorem 4.1 spec-

ifies the partial derivative; the same result has appeared in [46] in the context of
non-negative tensor factorizations.

Theorem 4.1. The partial derivatives of the objective function f in (3.1) are
given by

∂f

∂a
(n)
r

= −

(
Z

N

#
m=1
m6=n

a(m)
r

)
+

R∑
`=1

γ
(n)
r` a

(n)
` , (4.3)

for r = 1, . . . , R and n = 1, . . . , N , with γ
(n)
r` defined as

γ
(n)
r` ≡

N∏
m=1
m6=n

a(m)T
r a

(m)
` . (4.4)

Proof. It will prove useful to rewrite the objective function in (3.1) as three
summands:

f(x) =
1

2
‖Z ‖2︸ ︷︷ ︸
f1(x)

−〈Z, JA(1), . . . ,A(N)K 〉︸ ︷︷ ︸
f2(x)

+
1

2

∥∥∥ JA(1), . . . ,A(N)K
∥∥∥2︸ ︷︷ ︸

f3(x)

. (4.5)

The first summand does not involve the variables; therefore,

∂f1

∂a
(n)
r

= 0,
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where 0 is the zero vector of length In. The second summand is the inner product
between the tensor Z and its CP approximation, given by

f2(x) = 〈Z, JA(1), . . . ,A(N)K 〉

= 〈Z,
R∑

r=1

a(1)
r ◦ · · · ◦ a(N)

r 〉

=

R∑
r=1

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

zi1i2···iN a
(1)
i1r
a
(2)
i2r
· · · a(N)

iNr

=

R∑
r=1

(
Z

N

#
m=1

a(m)
r

)

=

R∑
r=1

(
Z

N

#
m=1
m6=n

a(m)
r

)T

a(n)
r .

Writing f2 this way makes it obvious that

∂f2

∂a
(n)
r

=

(
Z

N

#
m=1
m6=n

a(m)
r

)
. (4.6)

The third summand is

f3(x) =
∥∥∥ JA(1), . . . ,A(N)K

∥∥∥2
= 〈

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r ,

R∑
r=1

a(1)
r ◦ · · · ◦ a(N)

r 〉

=

R∑
k=1

R∑
`=1

N∏
m=1

a
(m)T
k a

(m)
`

=

N∏
m=1

a(m)T
r a(m)

r + 2

R∑
`=1
` 6=r

N∏
m=1

a(m)T
r a

(m)
` +

R∑
k=1
k 6=r

R∑
`=1
` 6=r

N∏
m=1

a
(m)T
k a

(m)
` .

Therefore,

∂f3

∂a
(n)
r

= 2

 N∏
m=1
m6=n

a(m)T
r a(m)

r

a(n)
r + 2

R∑
`=1
` 6=r

 N∏
m=1
m 6=n

a(m)T
r a

(m)
`

a
(n)
`

= 2

R∑
`=1

 N∏
m=1
m6=n

a(m)T
r a

(m)
`

a
(n)
` . (4.7)

Combining (4.6) and (4.7) yields the desired result.

Observe that γ
(n)
r` is indeed the (r, `) entry of the matrix Γ(n) defined in (3.4).

These values can be computed as follows. Compute the following R×R matrices (one
per mode):

Υ(n) = A(n)TA(n) for n = 1, . . . , N. (4.8)
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Then it is clear that

Γ(n) = Υ(1) ∗ · · · ∗Υ(n−1) ∗Υ(n+1) ∗ · · · ∗Υ(N) for n = 1, . . . , N.

In fact, we can rewrite the gradient in matrix form, as the following corollary shows.
Corollary 4.2. The partial derivatives of the objective function f in (3.1) are

given by

∂f

∂A(n)
= −Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
+ A(n)Γ(n), (4.9)

for n = 1, . . . , N , where Γ(n) is defined in (3.4).
Proof. Equation (4.3) in Theorem 4.1 can be rewritten as

∂f

∂a
(n)
r

= −Z(n)

(
a(N)
r ⊗ · · · ⊗ a(n+1)

r ⊗ a(n−1)
r ⊗ · · · ⊗ a(1)

r

)
+ A(n)γ(n)

r ,

for r = 1, . . . , R. Note that this expression exploits the fact that Γ(n) is symmetric.
Associating each r = 1, . . . , R with the column of a matrix yields (4.9).

Corollary 4.2 can also be derived starting from a NLS formulation, as has been
done by Tomasi [49, Paper III, Equation (35)]. We show this derivation in the next
section.

Here we also see an alternative derivation of the ALS updates. Setting the gradient
of f with respect to A(n) equal to zero yields

A(n)Γ(n) = Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
.

The ALS equation for updating A(n) given in (3.3) then follows immediately.

4.2. Regularizing the optimization formulation of CP. CP is known to be
unique when it satisfies, e.g., the Kruskal conditions [30] (see [29, §3.2] for a survey),
but only up to permutation and scaling of the factor matrices. In other words, a CP
factorization is unchanged by permutation, i.e.,

JA(1),A(2), . . . ,A(N)K = JA(1)Π,A(2)Π, . . . ,A(N)ΠK

where Π is an R×R permutation matrix. Likewise, CP is unchanged by scaling, e.g.,

JA(1),A(2), . . . ,A(N)K = J2A(1),
1

2
A(2), . . . ,A(N)K.

The scaling indeterminacy means that there is a continuous manifold of equivalent so-
lutions, which makes it difficult for optimization methods to find the solution because
there is not just one. In fact, the Hessian of f (see [2]) is singular at a solution. This
lack of a locally unique solution can be corrected by modifying the objective function
to include a Tikhonov regularization term:

f̂(A(1), . . . ,A(N)) ≡ 1

2

∥∥∥Z− JA(1), . . . ,A(N)K
∥∥∥2 +

λ

2

N∑
n=1

∥∥∥A(n)
∥∥∥2 . (4.10)

This is the same approach proposed by Paatero in his NLS formulation [40]. The
regularization has the effect of encouraging the norms of the factor matrices to be
equal, i.e., ∥∥∥A(1)

∥∥∥ =
∥∥∥A(2)

∥∥∥ = · · · =
∥∥∥A(N)

∥∥∥ .
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To justify our claim of equal norms, we prove in Appendix A that if the factor ma-
trices are fixed (e.g., a solution with perfect fit) except for scaling, then the effect of
the regularization is to equalize the magnitude of the vectors within each component.
Obviously the situation where the factors are not fixed is more complicated and the
value of λ must be chosen carefully so that the regularization term does not nega-
tively impact the fit. The permutation indeterminacy does lead to multiple equivalent
minimizers of f , but they are isolated minimizers and so do not negatively impact the
optimization.

Corollary 4.3. The partial derivatives of the objective function f̂ in (4.10) are
given by

∂f̂

∂A(n)
= −Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
+ A(n)Γ(n) + λA(n),

(4.11)

for n = 1, . . . , N , where Γ(n) is defined in (3.4).

The proof is straightforward and so is omitted. We compare both regularized
and unregularized formulations in §6. We should note that regularized formulation
may also mitigate the effect of degeneracy; however, it does not fully resolve the
problem based on our preliminary tests. We do not address the degeneracy problem
in this paper and leave the effect of regularization on degeneracy as a topic of future
research. It is also worth noting that there are other regularization approaches that
can be explored; for example, Navasca et al. [38] use regularization in the context of
ALS, penalizing the change between factor matrices across iterations and varying the
regularization parameter at each iteration.

5. Nonlinear least squares approach for CP. Paatero [40] and Tomasi and
Bro [49, 51, 52] have formulated the CP problem as a NLS problem, explicitly com-
puting its Jacobian J or the normalized form JTJ.

In this case, consider the CP problem as a nonlinear equation

F (A(1), . . . ,A(N)) ≡ Z− JA(1), . . . ,A(N)K = 0. (5.1)

Thus, we have

F : RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R 7→ RI1×I2×···×IN .

Clearly (5.1) has a solution when the data is noise-free and R is the rank of Z. More
generally, this can be solved in a least squares sense using NLS approaches. The f from
(3.1) is equivalent to the least squares objective function, i.e., f(x) = 1

2F (x)TF (x),
with x as defined in (4.2). The derivative of F is given elementwise as follows.

Theorem 5.1. The first partial derivative of (5.1) with respect to a
(n)
jr is a tensor

of size I1 × I2 × · · · × IN defined elementwise as

(
∂F

∂a
(n)
jr

)
i1i2···iN

=


−

N∏
m=1
m 6=n

a
(m)
imr if j = in,

0 if j 6= in.

The proof is straightforward and so it is omitted. Unfortunately, it is difficult to
express this in tensor notation.
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Instead, we can vectorize the input and output arguments in order to think of F
as a simpler mapping:

F : RP 7→ RQ,

where

Q =

N∏
n=1

In. (5.2)

Let J denote the Jacobian of F . Then we can write J as a blocked matrix where

J =
[
J(1) J(2) · · · J(N)

]
,

and J(n) is of size Q×RIn for n = 1, . . . , N . The matrix J(n) is in turn divided into
a series of R submatrices:

J(n) =
[
J(n1) J(n2) · · · J(nR)

]
,

where

J(nr) = − a(1)
r ⊗ · · · ⊗ a(n−1)

r ⊗ I⊗ a(n+1)
r ⊗ · · · ⊗ a(N)

r ,

and I is the identity matrix of size In×In. The blocks J(n) can be computed efficiently
as described in [49].

The matrix J has NR structural nonzeros per row, i.e., the product of the number
of modes in the tensor with the number of components in the factorization. For
example, if Z is a tensor of size 5× 4× 3 and there are R = 2 components, then the
Jacobian nonzero pattern is shown in Figure 5.1. It has Q =

∏3
n=1 In = 60 rows,

P = R
∑3

n=1 In = 24 columns, and NRQ = 360 nonzeros. Note that this figure is
similar to Figure 1 in [40] but the columns are ordered differently, corresponding to
our methodology for vectorizing a set of factor matrices as in (4.2).

Using the Jacobian, (5.1) can be solved in an NLS sense via the Gauss-Newton
method. This, however, requires solving a system with Jacobian matrix J which can
be extremely large (size Q × P , even though it is relatively sparse). Thus, Tomasi
and Bro [51, 52] have argued that it is preferable to work instead with JTJ using a
Levenberg-Marquardt (LM) method. In this case, the matrix is only of size P × P
and can be computed efficiently by exploiting the structure of J [49]. Moreover, the
inclusion of a multiple of the identity matrix in the LM method serves a regularization
function similar to that in (4.10).

As an aside, we note that the Jacobian can also be regarded as an operator. In
particular, consider JT as a mapping from “tensor” space to “factor matrix” space:

JT : RI1×I2×···×IN 7→ RI1×R ⊗ RI2×R ⊗ · · · ⊗ RIN×R.

Therefore, if JT is applied to a U, an N -way tensor of size I1 × I2 × · · · × IN , then
the result is a set of matrices V(1) through V(N) defined by

V(n) = U(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
.

For example, it is well known that ∇f(x) = −J(x)TF (x). The “vector” F is really a
tensor of size I1×I2×· · ·×IN , so we will denote it by F to make that clear. Likewise,
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Fig. 5.1: Jacobian nonzero pattern for a tensor of size 5× 4× 3 with R = 2

the “vector” ∇f is really a set of N matrices of size In × R for n = 1, . . . , N , so we
will denote them by G(1) through G(N). Then we have

G(n) = −F(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
=

(
−Z(n) + A(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)T)
(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
= −Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
+ A(n)Γ(n).

This is, as expected, the gradient in (4.9).

6. Numerical results. We compare the ALS, OPT, and NLS approaches for
computing CP, employing the data generation methodology of [52]. The data, de-
scribed in §6.1, is a collection of randomly generated three-way tensors with different
ranks, varying levels of collinearity (defined below) between the factors, and multiple
levels of homoscedastic and heteroscedastic noise. For each tensor, we compute a
CP factorization with the number of components equal to the rank of the tensor and
equal to one more than its rank (overfactoring). The details of the implementations
and parameter settings are given in §6.2. In §6.3, we analyze the results. Our com-
parisons of ALS and NLS are consistent with [52]. ALS can be remarkably fast but is
not accurate, whereas NLS is accurate but slow. Our OPT methods are as accurate
as NLS but faster. We note that we do not consider Tucker compression (see, e.g.,
[52]) in this paper, but compression can certainly be used with the OPT method as
it has been for ALS and NLS.

6.1. Data. We test our methods by factorizing artificially generated tensors of
varying size and rank. Specifically, we consider three-way cubic tensors of sizes 20,
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50, 100, and 250. We let Rtrue denote the rank of the tensor (before adding noise)
and use Rtrue = 3 and Rtrue = 5 in our tests. Following [52], we factorize the test
tensors using R = Rtrue and R = Rtrue + 1 (overfactoring).

We generate test tensors following the procedures and parameters in [52]. We

randomly generate factor matrices, A(1), A(2), and A(3) of appropriate size so that
the collinearity of the factors in each mode is set to a particular value, C. This means
that

a
(n)T
r a

(n)
s

‖a(n)
r ‖‖a(n)

s ‖
= C for r 6= s, r, s = 1, . . . , Rtrue, and n = 1, . . . , N. (6.1)

We use C = 0.5 and C = 0.9 in our experiments and generate 20 sets of factors
matrices for each combination of C and Rtrue; higher values of C make the problem
more difficult. The goal is to recover these underlying factor matrices once they have
been assembled into a tensor and noise has been added.

From each set of factor matrices, nine test tensors are created by adding different
levels of homoscedastic (i.e., constant variance) and heteroscedastic (i.e., differing
variance) noise as follows. We set l1 = 1, 5, 10 and l2 = 0, 1, 5 to be the desired noise
ratios of homoscedastic and heteroscedastic noise, respectively (corresponding to the
values used in [52]). Let N1,N2 ∈ RI1×I2×···×IN be tensors with entries randomly
chosen from a standard normal distribution. Then the test tensors are generated as
follows:

Z = JA(1), . . . ,A(N)K, (original tensor)

Z′ = Z + (100/l1 − 1)−1/2
‖Z‖
‖N1‖

N1, (homoscedastic noise added)

Z′′ = Z′ + (100/l2 − 1)−1/2
‖Z′‖

‖N2 ∗Z′‖
N2 ∗Z′, (heteroscedastic noise added)

where Z′ is used when l2 = 0. Note that when l2 = 0, this is simply adding Gaussian
noise.

To summarize, we generate a total of 720 cubic three-way test tensors for sizes
20, 50, 100 and 250; and we do a total of 1440 CP calculations (using R = Rtrue and
R = Rtrue + 1). The 720 test tensors come from two true ranks (Rtrue = 3, 5), two
collinearity levels (C = 0.5, 0.9), twenty sets of factor matrices per combination of C
and Rtrue, and nine noise level combinations (l1 = 1, 5, 10 and l2 = 0, 1, 5). These
parameters are summarized in Table 6.1.

Parameter Variants Values
Size (I × I × I) 4 20, 50, 100, 250
True Rank (Rtrue) 2 3, 5
Collinearity (C) 2 0.5, 0.9
Replicates 20 Random
Homoscedastic Noise (`1) 3 1, 5, 10
Heteroscedastic Noise (`2) 3 0, 1, 5
Number of Components (R) 2 Rtrue, Rtrue + 1

Table 6.1: Summary of parameters used to generate data for experiments
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6.2. Implementation details. In this section, CPALS, CPOPT(R), and CPNLS
denote the implementations of the methods presented in Sections 3, 4, and 5, respec-
tively. All experiments were performed using MATLAB v7.6. The details of the
implementation of each method, as well as the expected computational cost, are dis-
cussed below. Initial points for all tests were generated using the n-mode singular
vectors of the tensor (i.e., the nvecs command in the Tensor Toolbox [6]). We note
that none of the optimization methods discussed here is guaranteed to find a global
minimum — we can at best hope for a stationary point in the case of OPT and NLS.
The convergence of ALS to a stationary point has not been proven [29].

6.2.1. CPALS. ALS is implemented in the parafac als code from the Tensor
Toolbox [5, 6]. We used the default settings for the code except: (1) output to
the screen was disabled and (2) the stopping conditions specified in Section 6.2.4

were used. Each iteration requires the computation of A(n) for n = 1, . . . , N (see
Eq. 3.3). Since R is generally small in comparison to the size of the tensor, i.e.,
R� In for n = 1, . . . , N , it is assumed that the dominant computation in (3.3) is the
matricized-tensor times Khatri-Rao product, i.e.,

Z(n)

(
A(N) � · · · �A(n+1) �A(n−1) � · · · �A(1)

)
. (6.2)

There is a special function for this computation in the Tensor Toolbox called mttkrp.
The primary cost in (6.2) is multiplying the matrix Z(n) of size In × (Q/In), where
Q is defined in (5.2), times the Khatri-Rao product of size (Q/In) × R. Therefore,
the computational cost, measured in terms of the number of operations, is O(QR).
Consequently, the cost of each outer iteration of ALS, which contains N computations
of (6.2), is O(NQR).

There are other versions of ALS in the literature such as the ones accelerated with
different line searches or optimized implementations as suggested in [53]. Much of the
work on line searches for ALS has focused on either linear [7, 22, 49] or nonlinear [43]
extrapolation of factor matrices from previous iterations aimed at speeding up the
convergence of the algorithm and not at improving accuracy of the method. The ALS
implementation we use is already the fastest algorithm in comparison to OPT and
NLS approaches in our experiments; therefore, we have not included these possible
alternatives.

6.2.2. CPNLS. For NLS, the damped Gauss-Newton (dGN) method for three-
way arrays in PARAFAC3W [50] was used to solve CP formulated as in (5.1). We used
the default settings for the dGN code except: (1) output to the screen was disabled,
(2) compression was disabled, and (3) the stopping conditions specified in 6.2.4 were
used with all others disabled. This code implements the Levenberg and Marquardt
(LM) method [34] which modifies the normal equations, i.e.,(

JTJ + λI
)

∆x = −JTF, (6.3)

updating λ each iteration. The Jacobian J is singular due to the scaling indeterminacy
of CP [40, 41, 51, 52]; therefore, the modified normal equations in the LM approach can
be thought of as a form of regularization as discussed in §4.2 for the OPT approach.
As noted in §5, the Jacobian is sparse and has a specific structure; therefore, JTJ can
be computed efficiently but JTF still requires O(NQR) operations. For three-way
arrays, the primary expense at each iteration of NLS is solving the system in (6.3) at
a cost of O(P 3) operations, where P is as defined in (4.1). The dGN method in the
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PARAFAC3W code was selected because it implements LM as described in [52] and
is freely available.

6.2.3. CPOPT. The OPT and OPTR methods were implemented using the
Tensor Toolbox. At each iteration, the function in (3.1) and the gradient in (4.9)
for n = 1, . . . , N must be computed. This is similar to the computation of the ALS
update in (3.3). The pseudo-code for the computation is shown in Figure 6.1. As with
ALS, the matricized-tensor times Khatri-Rao product (mttkrp) computation given in
(6.2) dominates the expense of the calculation in the OPT methods. Therefore, the
cost per function/gradient evaluation is O(NQR). Recall that the only difference in
OPTR is the addition of the regularization term in the function and gradient, which
has little impact on the cost per evaluation; see (4.10) and (4.11).

Upsilon = cell(N,1); U = mttkrp(Z,A,1);

Gamma = cell(N,1); V = A{1} .* U;

G = cell(N,1); f2 = sum(V(:));

for n = 1:N G{1} = -U + A{1} * Gamma{1};

Upsilon{n} = A{n}’ * A{n}; for n = 2:N

end U = mttkrp(Z,A,n);

G{n} = -U + A{n} * Gamma{n};

for n = 1:N end

Gamma{n} = ones(R,R);

for m = [1:n-1,n+1:N] W = Gamma{1} .* Upsilon{1};

Gamma{n} = Gamma{n} .* Upsilon{m}; f3 = sum(W(:));

end

end f = .5 * nrmZsqr - f2 + .5 * f3;

Fig. 6.1: MATLAB code for calculating function value (f) and gradient (G) for CPOPT

for a given tensor Z and factorization JA(1), . . . ,A(N)K. We assume the squared norm
of Z has been precomputed and is stored as nrmZsqr.

Gradient-based optimization is performed using our own implementation of the
nonlinear conjugate gradient (NCG) method with Hestenes-Stiefel (HS) updates; see,
e.g., [39]. The Moré-Thuente line search from MINPACK2 was used for globalization
of the NCG method [36]. Exact line search methods have also been studied in com-
puting CP using ALS [49], where 2N − 1 function values are required. However, in
our experiments, the Moré-Thuente line search averaged only 2.5 function evaluations
per iteration, so we have not explored exact line searches in this work. For all exper-
iments, the Moré-Thuente line search parameters used were as follows: 10−4 for the
function value tolerance, 10−2 for the gradient norm tolerance, a starting search step
length of 1, and a maximum of 20 iterations. Note that any first-order optimization
could potentially be substituted for NCG. We have also employed a limited memory
quasi-Newton method using BFGS updates [39] for this problem, but the differences
between this method and NCG were negligible in our experiments.

2Adapted for MATLAB by Dianne P. O’Leary.
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We noted previously that both Paatero [41] and Wang and Hopke [55] proposed us-
ing specialized NCG, and here we make a few observations on the differences. CPOPT
uses HS updates in contrast to Fletcher-Reeves (FR) updates for both of their meth-
ods. In our preliminary tests, HS outperformed FR. Both of their methods also use
backtracking line searches, in contrast to CPOPT which uses the more sophisticated
Moré-Thuente line search.

It is important to observe that the cost per function/gradient evaluation in OPT
is equivalent to one outer iteration of ALS; therefore, even though we cannot predict
how many iterations of ALS or function evaluations in OPT we require for a given
CP factorization, we might expect the overall computational costs of OPT and ALS
to be on the same order of magnitude.

For CPOPTR, the regularization parameter was selected to be λ = 0.02 for
experiments with C = 0.5 and λ = 0.0001 for experiments with C = 0.9. More work
is needed to investigate how to best choose λ or how to best modify λ per iteration
as in [38].

6.2.4. Stopping conditions. In order to produce comparable results, all imple-
mentations were modified to share a common stopping criterion, the one commonly
used for termination in ALS methods which is the relative change in the function
value of f in (3.1). Specifically, the algorithm stops when

|fcurrent − fprevious|
fprevious

≤ 10−6,

where fcurrent and fprevious are the values of f at the current and previous iterations,
respectively.

In addition to the relative change in the function value, we use the following
stopping conditions for the individual solvers. For CPALS, the maximum number of
iterations is set to 104. For CPNLS, the tolerance on the infinity norm of the gradient
is set to 10−9, and the maximum number of iterations is set to 103 based on the
values used in [52]. For CPOPT and CPOPTR, the tolerance on the two-norm of the
gradient divided by the number of entries in the gradient is set to 10−8, the maximum
number of iterations is set to 103, and the maximum number of function evaluations
is set to 104. We note that all runs stopped by satisfying the condition for the relative
change in the function value, except for five runs where CPOPT reached the tolerance
for the gradient.

6.3. Analysis. Detailed numerical results are provided in Appendix B. In this
section, we consider the results summarized according to different experimental pa-
rameters.

All timings are reported for a Linux Workstation with a Quad-Core Intel Xeon
2.5GHz processor and 9GB RAM. Throughout, we report the time per CP calculation,
and timings are written as a ± b where a is the average time and b is the sample
standard deviation.

The accuracy is the percentage of runs that a given implementation is able to
recover the original set of factor matrices. Specifically, we say that the factors have
been recovered if the congruence for every component is above a threshold of 0.97
(≈ 0.993). The congruence between two rank-one tensors, X = a◦b◦c and Y = p◦q◦r,
is defined as [52]:

cong(X,Y) =
|aTp|
‖a‖‖p‖

× |bTq|
‖b‖‖q‖

× |cTr|
‖c‖‖r‖

. (6.4)
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Since there is sign ambiguity among the vectors comprising each component rank-one
tensor, i.e., a ◦ b ◦ c = (−a) ◦ (−b) ◦ c, absolute values are used in the numerators
of (6.4). Since CP is unique only up to a permutation of the component rank-one
tensors, we consider all permutations, choosing the one that results in the greatest
sum of congruences.

6.3.1. Tensor size. Across all sizes, CPOPT is more accurate than CPALS and
faster than CPNLS. Table 6.2 shows accuracy and timing results with C = 0.5 held
constant; this means that each cell in the table corresponds to 360 test tensors and
720 factorizations.

Time (sec)
Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 0.5 ± 1.0 0.3 ± 0.3 0.3 ± 0.2 0.2 ± 0.1
50 × 50 × 50 0.3 ± 0.3 2.0 ± 2.6 0.7 ± 0.5 0.5 ± 0.1

100 × 100 × 100 1.7 ± 1.1 11.5 ± 11.5 5.6 ± 3.6 4.3 ± 1.3
250 × 250 × 250 26.6 ± 9.1 143.9 ± 125.0 83.5 ± 35.2 81.9 ± 22.8

Accuracy (%)
Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 78.8 99.0 99.9 100.0
50 × 50 × 50 65.7 99.0 100.0 100.0

100 × 100 × 100 63.5 97.9 100.0 100.0
250 × 250 × 250 62.2 99.0 100.0 100.0

Table 6.2: Speed and accuracy comparison with collinearity C = 0.5

Recall that the cost for one iteration of CPALS is equal to that of one gradient
calculation for CPOPT. Therefore, it is not surprising that the cost in time for these
methods is of the same order of magnitude. In general, it seems that CPOPT is about
three times slower than CPALS. Further, CPOPTR is slightly faster than CPOPT
through the use of regularization. CPNLS is slower than the other methods because
it must solve the modified Gauss-Newton equation at each inner iteration; moreover,
it has a large standard deviation. The results in the next subsection indicate that it
is slower in the case of overfactoring.

In terms of accuracy, both CPNLS and CPOPT are essentially perfect, but
CPALS only obtains accuracies of 62-79%. Once again, results in the next subsection
indicate that the accuracy of CPALS suffers in the case of overfactorting.

6.3.2. Number of components in the factorization. Many of the differences
in the speed and accuracy of the methods can be attributed to their performance in
the case of overfactoring (R = Rtrue + 1). Figure 6.2 illustrates the accuracy and
timing results for tensors of size 50× 50× 50 with C = 0.5, separating the R = Rtrue

(blue) and R = Rtrue + 1 (red) cases. Observe that the accuracy of CPALS is 100%
in the case that R = Rtrue but falls to 30% when R = Rtrue + 1. All the methods
are more computationally expensive in the case of overfactoring because it takes more
iterations/function evalutions to converge for each method. Regularization helps with
overfactoring (for C = 0.5) and the increase in the number of function evalutions for
CPOPTR is, on average, less than the increase for CPOPT.

To further explore the overfactoring phenomena, we consider publically available
data [8] comprising five chemical samples measured by fluorescence at 61 excitation
and 201 emission wavelengths forming a third-order tensor with the following modes:
samples, emission wavelengths, and excitation wavelengths. Each of the five samples
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Fig. 6.2: Speed and accuracy comparison for extracting the number of true under-
lying components (blue) and overfactoring (red) on tensors of size 50 × 50 × 50 and
collinearity C = 0.5

contains different amounts of three amino acids [7]. It is known that the number
of true underlying components in the data is three; therefore, the spectra of these
chemicals in emission and excitation modes are accurately captured by computing
a CP factorization with R = 3 components. Even though R = 3 corresponds to
the number of true underlying components in the data, there is an artifact due to
the Rayleigh scatter [7] such that an extra component may partially capture it. We
compute CP factorizations with R values of 1 through 5 to show the effects of both
underfactoring and overfactoring.

Figure 6.3 plots the emission-mode factors—i.e., the columns of a CP factor ma-
trix corresponding to the mode containing emission wavelengths—scaled by the norm
of the corresponding component. Ideally, these are the emission spectra of the chem-
ical analytes in the sample. We can see that both CPALS and CPOPT extract the
same emission factors for R = 1, 2, 3. For R = 1, we capture a sort of average of the
first three factors. For R = 2, one factor is resolved, but the remaining two are still
somewhat merged. The R = 3 case corresponds to the correct emission spectra of
underlying chemical analytes. In the case of overfactoring, for R = 4, 5, the factors for
CPALS change, especially the smallest factor. For CPOPT, however, the first three
factors for R = 4, 5 are the same as the ones for R = 3 and the extra factors are close
to zero.

The norms of the components and timings of the methods for R = 3, 4, 5 are
reported in Table 6.3. The extra components computed by CPOPT are small in
magnitude. Moreover, CPOPT is actually faster than CPALS in both cases of over-
factoring.

We have also tested CPOPT on data sets from [23] that are considered to be more
difficult. Our experiments show that CPOPT is also robust to overfactoring on these
problems.

6.3.3. Collinearity. The performance of all four methods degrade as the collinear-
ity of the factors in each mode, see (6.1), is increased. With higher collinearity, the
problem is more difficult because there is more overlap in the factors. Table 6.4 shows
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Fig. 6.3: Factors corresponding to the emission mode of the amino acid fluorescence
data set [7, 8]. Plots are shown for CPALS (left) and CPOPT (right).

CPALS CPOPT
Component Norm (×104) Time Component Norm (×104) Time

R 1 2 3 4 5 (sec) 1 2 3 4 5 (sec)
3 3.3 2.3 2.1 0.5 3.3 2.3 2.1 1.5
4 3.3 1.1 2.1 1.4 6.2 3.3 2.3 2.1 10−4 1.7
5 4.3 2.3 2.3 2.7 1.5 60.0 3.3 2.3 2.1 10−4 10−4 1.9

Table 6.3: Norms of the component rank-one tensors and timings in the case of correct
R and overfactoring for the results shown in Figure 6.3.

results with C = 0.9, which can be contrasted to those in Table 6.2 with C = 0.5. The
higher collinearity problems take more time to solve and are less accurate. Further-
more, unlike the low collinearity case where CPOPTR is slightly faster than CPOPT,
regularization does not help in terms of computation time in the high collinearity
case. The reason for this is that a small regularization parameter (λ = 0.0001) is used
at the high collinearity level in order to keep the regularization error down and the
accuracy levels comparable for CPOPTR compared with the other methods.

Figure 6.4 shows a breakdown of speed and accuracy results for tensors of size
50×50×50. In comparison to Figure 6.2 where C = 0.5, the accuracies of the methods
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are low even if R = Rtrue. A comparable result is presented in [52]. Accuracy
actually improves for CPNLS, CPOPT, and CPOPTR in the case of overfactoring
(red), though the times are all more expensive.

Time (sec)
Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 1.1 ± 0.8 0.5 ± 0.5 0.7 ± 0.3 0.7 ± 0.3
50 × 50 × 50 1.8 ± 0.9 3.3 ± 3.4 1.5 ± 0.7 1.5 ± 0.6

100 × 100 × 100 14.2 ± 5.5 19.2 ± 20.4 12.9 ± 5.0 12.9 ± 4.8
250 × 250 × 250 242.1 ± 99.9 198.7 ± 171.8 231.5 ± 82.8 229.3 ± 82.7

Accuracy (%)
Size CPALS CPNLS CPOPT CPOPTR

20 × 20 × 20 29.0 31.8 32.2 32.6
50 × 50 × 50 65.6 69.9 69.9 69.9

100 × 100 × 100 73.1 77.5 79.4 79.7
250 × 250 × 250 79.9 87.1 89.6 89.4

Table 6.4: Speed and accuracy comparison with collinearity C = 0.9

Fig. 6.4: Speed and accuracy comparison for computing the number of true under-
lying components (blue) and overfactoring (red) for tensors of size 50 × 50 × 50 and
collinearity C = 0.9

6.3.4. Noise level. As noise level increases, the accuracy generally decreases.
Figure 6.5 plots the accuracies for all combinations of homoscedastic and heteroscedas-
tic noise for R = Rtrue (left column) and R = Rtrue+1 (right column). For R = Rtrue,
all the methods perform similarly. Furthermore, we know that the accuracy is perfect
for all methods at C = 0.5 when R = Rtrue (see Figure 6.2), so the dropoff at higher
noise levels is due to the more difficult problems with C = 0.9.

For R = Rtrue + 1, the performance of CPALS is worse. Interestingly, the perfor-
mance improves for `2 = 1 for CPALS. We hypothesize that the extra component is
then modeling the noise, but for `2 = 5 the performance degrades again.

6.3.5. Rank. The main effect of the rank of the tensor is in the computation
time. Figure 6.6 splits out the timing results for tensors of size 50 × 50 × 50 with
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Fig. 6.5: Accuracy of different methods for computing CP for R = Rtrue (left) and
R = Rtrue + 1 (right) at increasing levels of noise for tensors of size 50 × 50 × 50
taking into consideration both collinearity levels, C = 0.5 and C = 0.9. The numbers
on the horizontal axes indicate (l1, l2) pairs. Each subplot presents results where the
homoscedastic noise ratio (l1) is held constant while the heteroscedastic noise ratio
(l2) changes.

C = 0.5. On the left are timings for Rtrue = 3 (blue is R = Rtrue and red is
R = Rtrue + 1), and on the right are the corresponding timings for Rtrue = 5. We
see that the computation time of CPNLS increases significantly as the rank increases.
This is as expected, however, due to the O(P 3) cost of the method, where P depends
linearly on R (see §5 for more details).

Fig. 6.6: Speed for Rtrue = 3 and Rtrue = 5 for tensors of size 50× 50× 50 at C = 0.5
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We also consider the effect of rank on accuracy in Figure 6.7. In terms of accu-
racy, all methods except CPALS perform close to 100%, while CPALS suffers from
overfactoring. Interestingly, CPALS computes more accurate factorizations in the
case of overfactoring for Rtrue = 5 compared to those for Rtrue = 3. Further studies
are needed to determine if this trend continues as the tensor rank increases.

Fig. 6.7: Accuracy for Rtrue = 3 and Rtrue = 5 for tensors of size 50 × 50 × 50 at
C = 0.5

At high collinearity (i.e., C = 0.9), as the rank of the original tensor increases
from Rtrue = 3 to Rtrue = 5, the accuracy of all methods decreases. Table B.2a in
Appendix B illustrates this trend for the high collinearity case, which is not present
in the low collinearity case (i.e., C = 0.5).

7. Conclusions. Although both ALS [10, 22] and NLS [40, 49] are optimization-
based approaches to solving the CP problem, we revisit the problem and consider
another alternative. The OPT approach proposed here is a first-order gradient-based
optimization method to solve the CP optimization problem in (3.1); specifically, we
demonstrate the performance of OPT using a nonlinear conjugate gradient method.
Compared to ALS, OPT solves for all factor matrices simultaneously and our numer-
ical results show that this leads to increased accuracy in the case of overfactoring. In
contrast to NLS which uses (approximate) second-order information, OPT uses only
first-order derivative information; the overall speed of OPT is faster in the experiments
presented here due to a reduced cost per iteration.

Our results are consistent with those of Tomasi [49], who considered the scalability
of the methods for tensors of order three (168 × 168 × 168) through seven (9 × 9 ×
9× · · · × 9). Like we have observed, the results in [49] for order three show that OPT
is faster than NLS. As the order grows, NLS becomes slightly faster than OPT, but
this is to be expected because the number of variables in the optimization problem is
shrinking and the cost of the matrix factorization is consequently less significant.

Key to the good performance of OPT is the efficient tensor formulation of the
first derivative of (3.1). This formulation can serve as a model for deriving analo-
gous formulas for derivatives of other tensor decomposition objective functions. This
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work makes clear the connection between the gradient and the ALS method: ALS
sets the gradient to zero for just one factor matrix at a time, whereas the optimiza-
tion approach sets the gradient to zero for all factor matrices simultaneously. This
connection between ALS and OPT further means that the same methods to making
ALS applicable to large-scale problems [5] can be applied to OPT. Future work will
consider the scalability of OPT to large-scale sparse problems.

One of the major difficulties of solving the CP problem is addressing the scaling
and permutation indeterminacies. The OPTR method includes a Tikhonov regular-
ization term, which addresses the scaling indeterminacy. We have illustrated the con-
nections between OPTR and the implicit regularization in the Levenberg-Marquardt
method in NLS. In our numerical experiments, OPTR gave no advantage in accuracy
but was faster than OPT in the case of low (C = 0.5) collinearity; however, this
advantage did not persist in the high (C = 0.9) collinearity case. Future work will
investigate how to choose the best regularization parameter.

The formulation of the CP problem in (3.1) can be extended to include non-
negativity or sparsity constraints, and we propose that OPT can be extended in a
straightforward way to incorporate such constraints. We note, however, that the sub-
ject of initialization would need to be addressed when using such constraints since we
currently use the n-mode singular vectors. This is another avenue of future investi-
gation.

Appendix A. Detailed regularization discussion. We motivate the role that
regularization plays in defining a unique solution to (3.2). Suppose that a minimizer
of (3.2) is given by

JA(1), . . . ,A(N)K =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r .

Then a continuous manifold of equivalent minimizers are given by

R∑
r=1

β1r
a
(1)
r

‖a(1)
r ‖
◦ β2r

a
(2)
r

‖a(2)
r ‖
◦ · · · ◦ βNr

a
(N)
r

‖a(N)
r ‖

for any set of β-values satisfying

N∏
n=1

βnr = γr ≡
N∏

n=1

‖a(n)
r ‖ for r = 1, . . . , R.

This defines an infinite family of solutions.
Consider the case that the matrices (A(n)) are fixed and only the β values are

allowed to change. Then the regularized optimization problem in (4.10) (ignoring the
constant in the objective) reduces to

min
λ

2

R∑
r=1

N∑
n=1

β2
nr subject to

N∏
n=1

βnr = γr for r = 1, . . . , R.

This clearly separates into R independent problems so we can drop the r subscript
and just consider the problem

min

N∑
n=1

β2
n subject to

N∏
n=1

βn = γ. (A.1)
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Theorem A.1. The vector β∗ defined by β∗n = N
√
γ for n = 1, . . . , N is a strict

local minimizer of (A.1).
Proof. 3 The Lagrangian of (A.1) is defined by

L(β, ω) =

N∑
n=1

β2
n − ω

(
N∏

n=1

βn − γ

)
,

where ω is the Lagrangian multiplier for the single constraint. Consequently, the
first-order optimality conditions are:

2βn − ω
N∏

m=1
m6=n

βm = 0 for n = 1, . . . , N and

N∏
n=1

βn − γ = 0.

This is satisfied by β∗ with ω∗ = 2γ
2−N
N . Thus, β∗ is a constrained extremum point

of (A.1).
Let H(β, ω) and g(β) denote, respectively, the Hessian of the Lagrangian and

the gradient of the constraint with respect to β. Further, let H∗ = H(β∗, ω∗) and
g∗ = g(β∗). The second-order optimality conditions state that β∗ is a strict local
minimizer of (A.1) if zTH∗z > 0 for all z such that zTg∗ = 0. Since the elements of

the vector g∗ are all equal (i.e., g∗n = γ
N−1
N for all n = 1, . . . , N), the null space with

respect to the constraint gradients is defined by

N∗ = {z |
∑

zn = 0}.

Thus, if z lives in the nullspace of the constraints, then it must be the case that(
N∑

n=1

zn

)2

= 0 ⇒
N∑

n=1

z2n + 2

N∑
n=1

N∑
m=n+1

znzm = 0 ⇒ 2

N∑
n=1

N∑
m=n+1

znzm < 0.

It is also straightforward to show that

h∗ij =

{
2 if i = j,

−2 if i 6= j.

Thus, for any vector z ∈ N∗ we have

zTH∗z = 2

(
N∑

n=1

z2n − 2

N∑
n=1

N∑
m=n+1

znzm

)
> 0.

Hence, the claim.
From the previous theorem, we can see that if we fix the solution of (4.10) except

for scaling, then the best solution is given when all N vectors for the rth component
are scaled to equal size, i.e.,∥∥∥a(1)

r

∥∥∥2 =
∥∥∥a(2)

r

∥∥∥2 = · · · =
∥∥∥a(N)

r

∥∥∥2 .
3The proof follows the proofs and examples on optimality conditions for constrained optimization

problems given in [37].
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When that is the case for all R components, the Frobenius norms of the factor matrices
are also equal.

Appendix B. Detailed numerical results. The experimental set-up described
in Section 6.1 results in 23,040 individual experiments. In this appendix, we provide
summaries across a range of parameters, but we cannot provide all possible break-
downs due to space limitations. Therefore, we provide full results (timing and accu-
racy) of the individual experiments as a downloadable MATLAB MAT-file (data.mat)
along with a MATLAB M-file (data exploration.m) showing examples of how to pro-
cess the data to produce some of the figures and tables in the paper. In the results
presented here, each cell corresponds to twenty sets of factor matrices and nine levels
of noise (as described in §6.1) for a total of 180 test tensors.

Accuracy (%)
Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9
Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 47.2 49.4 45.6 100.0 67.8 11.1 10.0
CPNLS 100.0 98.3 51.7 51.1 100.0 97.8 11.1 13.3
CPOPT 100.0 100.0 52.2 52.2 100.0 99.4 11.1 13.3

CPOPTR 100.0 100.0 52.8 53.3 100.0 100.0 11.1 13.3

(a) Accuracy

Time (sec.)
Rank (Rtrue) 3

Collinearity (C) 0.5 0.9
Extr. Components (R) 3 4 3 4

CPALS 0.1 ± 0.0 1.0 ± 1.4 0.7 ± 0.3 1.0 ± 0.7
CPNLS 0.1 ± 0.0 0.3 ± 0.2 0.1 ± 0.1 0.4 ± 0.2
CPOPT 0.1 ± 0.0 0.4 ± 0.2 0.4 ± 0.1 0.6 ± 0.2

CPOPTR 0.1 ± 0.0 0.2 ± 0.0 0.4 ± 0.1 0.6 ± 0.2

(b) Computation time for Rtrue = 3

Time (sec.)
Rank (Rtrue) 5

Collinearity (C) 0.5 0.9
Extr. Components (R) 5 6 5 6

CPALS 0.1 ± 0.0 0.9 ± 1.2 1.2 ± 0.7 1.6 ± 1.1
CPNLS 0.1 ± 0.0 0.6 ± 0.3 0.6 ± 0.5 1.0 ± 0.6
CPOPT 0.2 ± 0.0 0.5 ± 0.2 0.8 ± 0.2 1.0 ± 0.4

CPOPTR 0.2 ± 0.0 0.3 ± 0.1 0.8 ± 0.2 1.0 ± 0.4

(c) Computation time for Rtrue = 5

Table B.1: Detailed results for 20× 20× 20 tensors

Appendix C. We thank Dianne O’Leary for helpful conversations on regular-
ization. We also thank Rasmus Bro, Giorgio Tomasi and the anonymous referees for
carefully reading earlier versions of the manuscript and providing helpful ideas for
improvement.
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Accuracy (%)
Rank (Rtrue) 3 5

Collinearity (C) 0.5 0.9 0.5 0.9
Extr. Components (R) 3 4 3 4 5 6 5 6

CPALS 100.0 7.2 100.0 58.9 100.0 41.7 81.1 79.4
CPNLS 100.0 99.4 80.0 91.7 100.0 96.7 83.3 93.3
CPOPT 100.0 100.0 100.0 100.0 100.0 100.0 74.4 83.9

CPOPTR 100.0 100.0 100.0 100.0 100.0 100.0 73.9 83.9

(a) Accuracy

Time (sec.)
Rank (Rtrue) 3

Collinearity (C) 0.5 0.9
Extr. Components (R) 3 4 3 4

CPALS 22.2 ± 1.5 19.8 ± 4.5 264.9 ± 54.9 167.5 ± 51.8
CPNLS 42.1 ± 13.8 135.4 ± 65.0 65.2 ± 21.8 140.4 ± 54.7
CPOPT 62.4 ± 13.1 70.2 ± 28.3 200.3 ± 46.2 154.2 ± 33.0

CPOPTR 70.5 ± 13.9 60.7 ± 9.5 197.1 ± 44.6 155.6 ± 33.3

(b) Computation time for Rtrue = 3

Time (sec.)
Rank (Rtrue) 5

Collinearity (C) 0.5 0.9
Extr. Components (R) 5 6 5 6

CPALS 26.5 ± 1.5 37.7 ± 11.0 294.4 ± 98.0 241.7 ± 126.3
CPNLS 97.0 ± 27.8 301.1 ± 141.5 199.6 ± 105.0 389.6 ± 214.6
CPOPT 77.0 ± 13.7 124.4 ± 38.2 255.6 ± 69.7 315.7 ± 68.8

CPOPTR 85.9 ± 13.9 110.2 ± 14.7 250.7 ± 68.9 313.9 ± 73.7

(c) Computation time for Rtrue = 5

Table B.4: Detailed results for 250× 250× 250 tensors
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